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Abstract
Local interaction simulation approach simulations of the ultrasonic wave
propagation in multi-grained materials have succeeded in reproducing most
of the recently observed nonclassical nonlinear effects, such as stress–strain
hysteresis and discrete memory in quasi-static experiments and a
downwards shift of the resonance frequency and the generation of odd
harmonics at specific amplitude rates in dynamics experiments. By
including a simple mechanism of thermally activated random transitions, we
can predict the occurrence of experimentally observed effects, such as the
conditioning and relaxation of the specimen. Experiments are also
suggested for a quantitative assessment of the validity of the model.

1. Introduction

Recent experimental studies [1–3] have clearly shown that a
variety of materials, such as rocks, concrete, elastic materials
with mesoscopic defects, etc share a same peculiar elastic
behaviour, despite very different microstructure and chemistry.
In such materials nonclassical nonlinear effects manifest
themselves in both quasi-static [4] and dynamic experiments
[2, 5]. A most striking feature is the so-called ‘slow dynamics’,
which consists in a downshift of the resonance frequency
when the specimen has been dynamically excited, and
consequent recovery proportional to the logarithm of elapsed
time [6].

A similar effect is found in quasi-static experiments,
where typical hysteretic loops are observed. However,
before obtaining them in a stable (repeatable) way,
several conditioning stress cycles with increasing residual
deformations must be performed. And, if the applied stress is
kept constant during or at the end of the experiment, the strain
slowly decays and eventually the stress–strain curve falls down
over one of the conditioning cycles.

All these effects may be related to the presence of
mesoscopic features, which may be considered as bonding
regions with specific nonlinear elastic properties. Typical
examples are defects and/or interstices among grains in a
polycrystalline aggregate or in a granular material. For
example, it is well known that, when microscopic contacts

are present, dislocations and static friction effects may modify
the material strength [6, 7]. Therefore, the application of an
external forcing (conditioning) may result in the accumulation
of deformation energy in the proximity of contact areas, such
as in the case of delaminations or contacts between grain tips.
If the energy becomes sufficiently large, rupture of some bonds
may occur, with consequent effects at a macroscopic level [8].
The ‘activation energy’ is generally different for the different
kinds of bonds and asymmetric, i.e. different energies are
required for restoring vs breaking the bonds. Furthermore,
thermal relaxations may induce additional modifications in the
bonds structure.

While the traditional nonlinear (Landau) [9] theory is not
sufficient to describe these nonlinear phenomena [10, 11], they
may be well reproduced by models [12, 13] based on the local
interaction simulation approach (LISA) [14, 15], applied in
conjunction with a Spring Model approach and a Preisach-
Mayergoitz (PM) representation [11, 16]. In this approach,
the specimen is described as a sequence of elastic elements,
the ‘grains’, and nonclassical regions corresponding to the
interstices, also called hysteretic mesoscopic units (HMUs).
The latter behave either rigidly or elastically, depending on the
local pressure. To describe this behaviour we have introduced
a two-values state variable r which defines the state of the
HMU. The resulting model has allowed us to obtain most of
the effects observed experimentally both in the dynamic [12]
and quasi-static [13] case.
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The purpose of the present contribution is to show that
thermal fluctuations between the two above mentioned states
may be used to predict conditioning and slow dynamics
effects, in agreement with experimental observations. In the
next section, we briefly describe the model which, although
based on phenomenological considerations rather than on the
physical properties and specific parameters of a real material,
is, in our opinion, general and flexible enough, to provide a
suitable tool for the introduction of realistic interaction forces.
In the following section, we present a few results of virtual
quasi-static experiments, to be compared with the results
of real experiments in order to demonstrate the reliability
of the model. An application to dynamic experiments is
forthcoming.

2. The model

Let us consider a bar of a multi-grained material and assume
that all the grains have equal length ε, are homogeneous and
somewhat aligned. The specimen may then be represented by
a one-dimensional lattice, as sketched in figure 1(a), i.e. as
a sequence of elastic portions (the grains), each of mass m,

separated by massless interstice regions (the HMU’s defined
in the introduction). Following the Spring Model approach
[15], each grid node i is split into two sub-nodes i±, which
delimit the corresponding HMU.

We then assume that an ultrasonic pulse (or wave) travels
along the specimen acting upon each node i by means of
two elastic ‘external forces’ F +

i (t) and F−
i (t), applied to the

two sub-nodes i+ and i− from the right- and left-hand side,
respectively (see figure 1(a)). As a consequence the two sub-
nodes undergo the displacements u+

i (t) and u−
i (t). Associating

to each sub-node a mass m/2, it follows

1
2mü±

i = F±
i − γ u̇±

i ∓ fi (1)

where γ is the attenuation coefficient in each grain and fi

is an internal force (to be specified later) whose task is
to keep the two sub-nodes together. Next we define the
HMU centre-of-mass displacement ui(t) = (u+

i + u−
i )/2 and

length δi(t) = u+
i − u−

i . For the former equations (1) yield
immediately

müi = F +
i + F−

i − 2γ u̇i (2)
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Figure 1. (a) One-dimentional lattice representation of the bar. The
black dots represent the sub-nodes delimiting the HMU’s.
(b) Simplified lattice with varying spring rest-lengths li (t).

Assuming that each grain has a constant ‘equilibrium’
length ε0 and stiffness S, we can write the external forces as

F±
i (t) = S(u∓

i±1 − u±
i ) (3)

It is interesting to observe that, since

ui − ui−1 − 1
2 (δi + δi−1) = u−

i − u+
i−1 (4)

we have

F±
i (t) = S

(
ui±1 − ui − 1

2 (δi + δi−1)
)

(5)

Therfore, it is possible to interpret equation (5) as the elastic
force due to a spring with

li(t) = ε0 + 1
2 (δi + δi−1) (6)

as a varying rest-length in a simplified lattice (see figure 1(b)).
In order to find an equation for δi(t), we must include in the

model the ‘internal’ bonding forces fi , which, as mentioned in
the introduction, are assumed to leave the HMU in one of two
possible states, according to the value of the state variable ri .

• Rigid bond case, defined by the value ri = 0 of the state
variable. In this case, δ̈i = δ̇i = 0, δi does not change and
the pulse propagates unaffected by the HMU.

• Variable HMU length case, defined by ri = 1. In this
case, the two sub-nodes may drift apart or get indefinitely
closer, and a restoring elastic force (with coefficient Ki) is
needed to take into account the ‘resistance’ opposed, e.g.
by the surrounding grains of the specimen to a variation
of δi from its ‘equilibrium’ value δi(0).

The two cases considered can be both represented by the
equation (which implicitely includes the internal forces)

1
2mδ̈i = ri(QiPi − γ δ̇i − Ki(δi − δi(0))) ri = 0, 1

(7)

where

Pi = F +
i − F−

i (8)

is the pressure applied to the interstice and Qi is a model
parameter (0 � Qi � 1) used to describe the quality of the
bond region. According to equation (7), the internal forces are
defined in the present model as:

fi = 1
2 [(Qi − 1) P − Ki (δi − δi(0))] non rigid case

fi = − 1
2P rigid bond case

(9)

Omitting for brevity the index i, the state variable r for
each individual HMU depends, of course, on the microscopic
details of the grains structure and applied pressure P .
We consider in the following a very simple mechanism,
represented in figure 2, in which each HMU is characterized
by a pair of values Po and Pc (opening and closing pressures,
respectively). These values may be different for each HMU,
but always Po � Pc. Plotting all the (Pc, Po) pairs in a
Pc, Po plane generates the so-called PM representation (see
two examples in figure 3).
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Figure 2. Dependence of the state variable r on the applied pressure
P. The dashed arrows represent the transition rates between the two
states r = 1 and 0.

(a)

(b)

Figure 3. Two examples of PM-space density distributions (A and
B). They are discussed in details in the text in section 4. Lighter
gray tones denote larger densities.

Starting for any given HMU at a given pressure value
P < Pc, we assume that r = 1 up to when, for P = Pc, it
drops down to zero. Conversely, when P decreases, r remains
equal to zero up to when, for P = Po, it suddenly jumps to 1.
In spite of its simplicity, this phenomenological model allows
to reproduce all the observed effects in both quasi-static and
dynamic experiments [12, 13].

In order to predict slow dynamics effects, an additional
feature must be included, i.e. the possibility for Po < P < Pc

of transitions from one of the two allowable states to the

other. In fact, due to thermal activation, random transitions
are possible with probabilities p1 and p2 for switching r

from 1 to 0 or vice versa. These hopping transition rates
increase, of course, with the temperature, but in the present
context, in which only isothermal processes are considered,
this dependence is not explicitly included. Likewise, any other
dependence of p1 and p2 on, e.g. the applied pressure P is
neglected. Since one can expect that the ‘rigid’ state be more
stable than the elastic one, it is assumed that p1 > p2.

3. Quasi-static experiments

We consider in the present contribution only quasi-static
experiments, in which the external stress σ , acting on the bar,
is varied with time according to a certain protocol, but always
leaving sufficient time between successive steps for the stress to
distribute itself homogeneously through the specimen, so that
the system can be assumed to be in equilibrium at any time
(i.e. all time derivatives can be set to zero) and the results
are independent on damping. Quasi-static conditions can be
easily achieved, since the time for an ultrasonic pulse to cross
the entire bar (whose length is assumed to be �1 m) is of the
order of 10−4 s, while several seconds (or even minutes) elapse
between successive stress steps.

In the following, we consider virtual experiments
performed with a protocol, in which the applied stress σ varies
from 0 to a given σmax in N steps �σ , each of which requires
T time steps, each of duration τ . The stress is then released,
again in N steps �σ . Since the system is in equilibrium at any
time, we can write for each node during the first half cycle of
the protocol

Fi(pτ) = n�σ for nT < p � (n + 1)T

(n = 0 · · · N, p = 0 · · · NT + T )

Pi(pτ) = 2Fi(pτ)

(10)

and similar equations thereafter. During each of the T time
steps between two successive stress steps, the system is allowed
to ‘relax’ under the action of the thermally activated random
transitions (p1 and p2).

The HMU lengths δi(σt ) may be easily calculated from
equation (7). In fact, when ri(t) = 0, they are unchanged from
the previous values δi(σt−1). When ri(t) = 1, the equilibrium
condition requires that δi(σt ) = QiPi(t)/Ki , since δ̇i = 0 and,
without affecting the strain, we can assume for simplicity that
δi(0) = 0. The resulting strain of the bar can be evaluated
at any time t as the sum of all the δi(σt ) and of the grain
deformations (divided by the bar rest-length L).

4. Results and discussions

In this section, we simulate the quasi-static response of a
bar assumed to include 15 000 HMUs. Since in the present
contribution we limit ourselves to present a few examples to
illustrate qualitatively the behaviour of the system, we choose
the parameters arbitrarily. Unless stated otherwise p1 =
0.002, p2 = 0.001 (transition probabilities per time step),
Q = 0.9, S = 1, K = 0.1 (in arbitrary units). T has been
kept as a free parameter to investigate the effect of changing
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the transition rates. In fact, varying T or, by the same factor,
both p1 and p2 yields very similar results.

As already mentioned, the distribution in the PM-space
dictates the shape and width of the hysteresis loop. To
show that the phenomenology described in this paper is
qualitatively independent from the choice of PM-space, we
consider two different representations, both suggested by a
PM-space density ρ(Pc, Po) numerically determined for a
Berea sandstone. In both cases (see figure 3) we have extended
the density given in [16] to the Po < 0 region in the PM-space:

(a) the PM density is assumed to be exponentially decaying
with increasing distance from the diagonal Po = Pc and
with Gaussian distribution along the diagonal:

ρ(Pc, Pc) = exp(−a1P
2
c ), (11)

ρ(Pc, Po) = ρ(Pc, Pc) exp(−a2(Pc − 1 − Po)) (12)

with a1 = 0.0001 and a2 = 0.005. The density is
assumed to be symmetric along the line Pc = −Po. This
distribution in the positive pressure region is similar to the
ones reported in [13, 16].

(b) Here the density is assumed to be mostly localized along
the diagonal and in the lower-left corner of the PM-space,
except that now the origin has been shifted down to
negative pressure values. To this purpose, the distribution
is chosen in such a way that

∫ Pc

−∞ ρ(Pc, Po) dPo does not
depend on the upper limit Pc and also that, for any Pc

value, ρ(Pc, Po) is constant, i.e. does not depend on Po.

Figure 4 shows the effect on the strain of many stress
(or pressure) cycles, as described in the previous section, with
T = 50. Starting from zero stress and strain and adopting
the r(t) scheme of figure 2, we find, for both choices of PM
density (figures 4(a) and (b)), a different path in the strain–
stress plane when pressure is applied or released, as expected.
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Figure 4. (a) Successive stress cycles and conditioning in the case
of PM density A. (b) Successive stress cycles and conditioning in
the case of PM density B. (c) Hysteretic loop at saturation for the
two cases.

In addition, to this hysteretic behaviour, we observe, at the end
of each stress loop, a residual strain (conditioning) due to the
HMU’s with P0 < 0 < Pc. In fact, for those units the value
of r at P = 0 (and therefore the value of the corresponding δ)
is different in the two legs of the cycle. If p1 = p2 = 0, the
second cycle would be repeated all over again in subsequent
cycles, since all the parameters would remain the same. Due
to the nonzero values of p1 and p2, however, the situation
changes at each new cycle, up to when a saturation value of
the residual strain is reached, i.e. the system is in equilibrium
between hopping up and down events.

From that time on, the stress cycles generate stable and
closed hysteretic loops (see figure 4(c)). The stable loops
obtained for the two choices of the PM-space share the
same characteristics (hardening and curvature). It is in fact
interesting to remark that in the stable loop the curvature is
always downwards, i.e. the stiffness increases with the applied
stress, although less so in the upgoing branch. The larger
residual strain for the case with PM density B is due to the
larger number of HMU’s located in the Po < 0 region.

The behaviour of the residual strain as a function of time
(normalized to T ) is reported in figure 5(a) for the two PM
densities. Again, the two curves show the same behaviour with
a comparable delay in reaching the stable loop, as expected,
since the delay should depend only on the experiment speed
(T ) and relaxation probabilities.

In figure 5(b) the residual strain is plotted vs time
normalized to T for two different stress protocols for PM
density B: T = 50 and 200. The number n of cycles
needed to reach saturation is almost the same in both cases
(n = t/T ∼ 6), in agreement with the fact that, for large
enough T , n should depend almost only on the transition
probabilities. As a consequence, the time required to reach
saturation is approximately four times larger for T = 200,
consistent with the four times longer stress cycles. In addition,
the level of residual strain reached asymptotically is much
higher for T = 50. A simple explanation of this effect may
be that, if the experiment is performed faster, there is less time
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Figure 5. (a) Dependence of the residual strain on the elapsed time
for the two PM densities. (b) Dependence of the residual strain on
the elapsed time for two different values of T (PM density B).
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Figure 6. Maximum residual strain at saturation and approximate
number of cycles needed to reach it, as functions of the time T
allotted to each stress step (PM density B).

available for relaxation between successive experiments and,
as a consequence, more residual strain is accumulated. In both
cases, the numerical data can be fitted well with an exponential
increase of the residual strain with time towards a saturation
value.

In figure 6, the maximum residual strain (i.e. the strain
at zero stress for the saturation cycle) and the approximate
number of cycles needed to reach it, are plotted vs T . Again,
we find an exponential curve fitting for the maximum residual
strain, which decreases when the experiment is performed
more slowly. Also, for slow enough experiments (large T ),
the number of cycles is almost constant, as already remarked.

In figure 7, we consider the temporal evolution of the
residual strain when several stress cycles are applied to the
specimen, which is then left to relax. Initially the residual
strain increases with time, as it could already be seen in
figure 4(a) (for σ = 0), until saturation is reached. Then
no further stress cycles are applied and thermal relaxation
brings the system back to the original zero strain condition.
In agreement with experimental results, the process is very
slow. In figure 7(b) the decay part of the curve is plotted vs
the logarithm of time. The result seems to be a straight line
between the times t1 and t2. The behaviour is similar for both
PM distributions.

To our knowledge, the relaxation process in quasi-static
experiments has not yet been studied. However, preliminary
data on Berea sandstone seem to indicate the existence of
a residual deformation when the stress is removed (i.e. at
the end of the loading–unloading cycle), which recovers
logarithmically with time [17]. Also, experimental evidence
has been found for a log(t) recovery in resonant dynamic
experiments [2, 6].

In figure 8, we study the effect of relaxation at a fixed
stress. To this purpose, we simulate a succession of stress
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Figure 7. Time evolution of the residual strain (a) when several
stress cycles are applied to the specimen, which is then left to relax;
(b) during relaxation vs log(t). PM density A: •; PM density B: �.
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Figure 8. (a) The first and the stable cycles are shown, and also the
behaviour after relaxation at σ = 10 a.u. (b) Strain vs log(t) during
relaxation at σ = 10 a.u. (PM density B).

cycles until saturation is reached. Then, we perform an
additional cycle in which, when σ = 10 a.u. and in the
downgoing branch, the system is left to relax for a very long
time keeping the stress fixed. The temporal evolution of the
strain during relaxation, shown in figure 8(b), exhibits again
a log(t) decay. After relaxation, the stress cycle is completed
down to zero stress (see figure 8(a)). As a consequence, the
strain falls down to a loop corresponding to a previous stress
cycle, in agreement with experimental observations.
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log(t) for different values of the transition probabilities
(PM density B).

Finally, in figure 9, we analyse the effects of different
choices for the ratio p1/p2 on the relaxation of the residual
strain (PM density B). As expected, no residual strain and
no relaxation are observed when p2 = 0. In fact, HMUs
with Po < 0 are all initially rigid and remain rigid during the
entire compression experiment. In all other cases, a complete
recovery is observed, with a logarithmic behaviour during a
long time interval. Recovery is faster when the probability p1

is larger.

5. Conclusions

A model has been recently proposed for the simulation of
nonclassical nonlinear effects in quasi-static [13] and resonant
dynamics [12] experiments. The model is based on a
description of the specimen (a bar made of a multi-grained
material) as a sequence of elastic grains and interstices (called
hysteretic mesoscopic units). The latter are assumed to be
responsible for the nonclassical nonlinear properties of the
specimen and own their hysteretic behaviour to a two-valued
state variable r(t).

In this contribution, the model is further enriched by the
inclusion of thermally activated random transitions between
the two values of the state variable. As a consequence,
various experimental observations, such as the conditioning
of the specimen under the effect of a sequence of quasi-static
stress cycles and its very slow return to the initial conditions
when the stress is released, are well reproduced. In addition,
several predictions are made, which could be easily verified
experimentally. Among them:

(a) Figure 6(b) predicts the number of cycles required to reach
saturation for different values of the time elapsed in each
stress step.

(b) Figure 7(b) suggests a logarithmic relaxation of the
residual strain, analogous to the logarithmic recovery in
slow dynamics experiments.

(c) Figure 8(b) predicts a similar logarithmic relaxation also
at fixed stress.

Of course all these predictions are merely qualitative, since
the values of the parameters p1 and p2 are not known. In
fact, quasi-static experiments to verify the predictions of the
model would be extremely useful to confirm the validity of the
proposed mechanism of thermally activated random transitions
(or else to suggest modifications thereof) and to evaluate the
corresponding parameters. It is important to note that the
above mentioned predictions are qualitatively independent of
the details of the underlying basic model and stress protocol,
but rely substantially on the mechanism of hopping transitions
between the two values of r(t).
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